Connect with us

Hi, what are you looking for?

POZ

The more HIV in the blood, the easier for the virus to diversify – study

People living with HIV and have higher viral loads also have higher rates of viral recombination. In effect, the more HIV in the blood, the easier it is for the virus to diversify.

SCANNING ELECTRON MICROGRAPH OF AN HIV-INFECTED H9 T CELL

People living with HIV and have higher viral loads also have higher rates of viral recombination. In effect, the more HIV in the blood, the easier it is for the virus to diversify.

This is according to a study – “Elevated HIV Viral Load is Associated with Higher Recombination Rate In Vivo” by Elena V. Romero and Alison F. Feder” – that appeared in the Molecular Biology and Evolution, published by Oxford University Press.

More generally, recombination is an important evolutionary driver, permitting organisms to purge destructive mutations and combine beneficial ones. Despite its importance, scientists do not yet understand how HIV’s recombination rate varies throughout an infection or between different people. Understanding the factors that impact recombination rate in a well-studied system such as HIV can help uncover some of the effects that recombination has on evolution more broadly.

One important yet understudied step in HIV recombination is coinfection, in which two different virus particles infect the same cell. Despite longstanding interest in HIV recombination, it is still not understood if variation in the rate of coinfection could lead to variation in recombination rate. While studies of HIV in cell cultures and mice have demonstrated that increased coinfection is associated with an increase in recombinant viruses, it is unknown if this effect is found in people living with HIV.

The researchers involved in this study hypothesized that people with higher viral loads (more HIV in the blood) would have more cells that were coinfected, which would lead to higher rates of recombination for the virus. To investigate this hypothesis, they developed a new approach called Recombination Analysis via Time Series Linkage Decay (RATS-LD) to quantify recombination using genetic associations between mutations over time.

These results suggest that rates of HIV recombination can be even more extreme than researchers recognized previously. Beyond HIV, many organisms such as bacteria and plants do not need to recombine to reproduce but can benefit from it. To exchange genetic material, these organisms also rely on two different genomes meeting each other at the same place and time. Because of this, the researchers’ findings also suggest that population density could influence the effective rate of recombination across multiple settings.

“An explosion of sequencing data over the past few decades has given geneticists a deeper understanding that recombination rates can be context-dependent and are influenced by many different molecular factors,” said Elena V. Romero, one of the authors of the paper. “Here, we show that population density may serve as one of those previously underappreciated factors for viruses.”

Advertisement. Scroll to continue reading.
Advertisement
Advertisement

Like Us On Facebook

YOU MAY ALSO LIKE

POZ

Women with HIV experience accelerated DNA aging, a phenomenon that can lead to poor physical function.

From the Editor

May mga yumayaman sa HIV “advocacy”. And this is maddening because this often comes at the expense of PLHIVs themselves. So we say, enough....

From the Editor

Yes, seminars are essential in LGBTQIA and HIV advocacy. But for some, it's the be-all/end-all of all efforts, giving rise to 'seminar activists' who...

Features

With AO No. 2021-0056-A, the DOH is now excluding HIV from the list of "dangerous communicable diseases". Moving forward, the remains of people with...

Advertisement